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LETTER TO THE EDITOR 

Block copolymer lamellar thickness; an exactly solvable 
model 

Y Oono and M Bahiana 
Department of Physics, Materials Research Laboratory and the Beckman Institute, 1110 
W. Green Street, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 

Received 24 May 1989 

Abstract. An exactly solvable model for the strongly segregated diblock copolymer melt is 
proposed, which gives an analytic expression for the concentration profile. The lamellar 
thickness L for the ordered phase as a function of the molecular weight M is analytically 
demonstrated to be L - M2I3. 

Diblock copolymers are polymers made by grafting two chemically distinct subchains A 
and B. In this Letter we consider only those diblock copolymers with equal length 
subchains. At lower temperatures these subchains tend to demix to form a lamellar 
phase (striped phase consisting of layers of codimension 1). Experimentally, it is possible 
to determine that L - M”, where M is the molecular weight. The value of a depends on 
the segregation regime: in the weak limit a = 2,  and in the strong limit a = f (Hashimoto 
et a1 1980). The purpose of the present Letter is to give an exactly solvable model of 
block copolymer morphogenesis in the strong segregation regime. 

Helfand and Wasserman (1976) used a detailed chain picture to compute numerically 
the exponent a = 0.636. Leibler (1980) derived the following Hamiltonian for the order 
parameter q of the block copolymer melt, where q is the monomer concentration 
difference of A and B species: 

where @(q) is the local free energy function for which Leibler adopted the usual q4 
functional form, and G is the Green function for the Laplacian under a suitable boundary 
condition. Here, unnecessary numerical constants have been suppressed. Using this 
Hamiltonian, Leibler (1980) could explain the weak segregation exponent. Ohta and 
Kawasaki (1986) derived the Hamiltonian more systematically, and variationally 
obtained a = 3 for the strong-segregation regime with the aid of an appropriate trial 
function. From a very different point of view, Oono and Shiwa (1987) arrived at the 
same system. They pursued a computationally efficient model which can exhibit striped 
patterns, and arrived at the following mathematical model: 

d q ’ / d t  = A(d@/dq - A q )  - b q  (2) 
where b is a phenomenological positive parameter. When b = 0, this equation reduces 
to the Cahn-Hilliard equation. The model turns out to be a time-dependent Ginzburg- 
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Landau equation for the conserved order parameter with the Leibler (1980) Hamiltonian 
(1). The relation between b and the molecular weight M was fixed as b CX 1/M2 through 
(i) a dimensional analytical argument, (ii) a numerical study of the equation and (iii) 
comparison of equations (1) and (2) (Oono and Bahiana 1988). In the same paper, the 
relation between the exponent (Y and the growth exponent for the spinodal decom- 
position was also pointed out. Recently Liu and Goldenfeld (1989) analysed the equation 
numerically, determined the density profile as well as the crossover behaviour between 
the weak- and strong-segregation limits and obtained (Y = 0.650. 

We have been making extensive use of the cell-dynamical system (CDS) models for 
spinodal decomposition and phase ordering of block-copolymer systems (actually the 
original model (Oono and Shiwa 1987) was a CDS version) to understand various features 
of phase ordering kinetics (Oono and Puri 1987,1988). One of the fundamental problems 
is to find the minimal mathematical ingredients necessary to get the actually observed 
universal features. We have demonstrated numerically that the actual functional detail 
of Q, is not important in spinodal decomposition (Oono and Puri 1988); what is relevant 
is that Q, has two minima symmetrically placed around the local maximum at the origin, 
and the function grows sufficiently fast to infinity when lql becomes large. The detail of 
0 affects only the interfacial structural detail and, in the case of spinodal decomposition, 
early time stages. A similar phenomenon can be demonstrated in the case of the block 
copolymers as well. In order words, if the function Q, satisfies the above mentioned 
abstract conditions, then the model with that Q, is in the same universality class of the 
ordinary spinodal decomposition in case b = 0 and in the same universality class of the 
ordinary block copolymers in case b > 0. 

We shall exploit this universality or insensitivity to devise an analytically convenient 
model of the block copolymer system. Thus we use the following local free energy 
function: 

The function satisfies all the conditions mentioned above. To understand the equilibrium 
pattern we have to find the stationary solution to equation (2 ) .  With the free energy 
defined above, this corresponds to solving the linear ordinary equation for the codi- 
mension 1 lamellar pattern 

d2q/dX2 - d4v/dx4 = bq.  ( 4 )  

Nonlinearity comes only through the matching condition between the domains with 
I) > 0 and V <  0, which is dictated by the requirement for the continuity of the driving 
force I) - sgn(v) - d2v/dx2 when $J = 0. We look for an even periodic continuous 
solution with period 2L that is positive near the origin. A simple computation gives the 
following general form for the solution in [ -L/2,  L/2]: 

V ( X )  = [ l / d ( l  - 4b)l [(cosh p~/cosh(PL/2)) - (cosh CYX/COS~(CYL/~))] (5) 

where CY = v[ 1 + -/2] and p = v[ 1 - v( 1 - 4b)/2]. Thus for a given b (4) 
there is a family of solutions with different periods 2L. Notice that for sufficiently large 
L the obtained profile has extrema1 points near interfaces as was shown in the numerical 
solutions of Liu and Goldenfeld (1989). 

The selection of the actually observable period is given by the minimum of the free 
energy density F ( L )  of the system. In the strong-segregation limit the free energy density 
can be expanded in b as (unimportant constants are discarded) 
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m F ( L )  = ( l /L)  tanh(L/2) - 2V%(l/L) tanh(Ll2) 

+ b(L2/24 - 2/cosh2(L/2) - (1/L)19 tanh(L/2) 

- (tanh2(L/2))/2 + . . .) 
We may discard transcendentally small terms, so that in the strong segregation limit, 
l/cosh(L/2) may be ignored, and tanh(L/2) may be set to unity. Thus minimisation of 
the above expansion (it is easy to demonstrate that the free energy is holomorphic in 
d b  near the origin), we get the following asymptotic formula for L:  

L = 2(2b/3)-1/3(1 - 22/%/3 + . . .). (7)  
That is, cy = 3 .  If we analyse the free energy formula above, it becomes clear that 
the dimensional analytic argument is actually exact. Thus the dimensional analytic 
derivation of this asymptotic exponent (Oono and Bahiana 1988) is not fortuitous. 

The present model is not a good model for weak segregation regime, because the 
potential (local free energy) has a cusp at the origin. However, we can study the L + 0 
limit. The analytic formula for the free energy shows that if b > 0.075 235. . . , L = 0, 
that is, the flat (disordered) phase is the state selected by the free energy minimum. The 
asymptotic power law L - b-'/3 holds for b < 0.01. For larger b the effective exponent 
is smaller than -4. Thus our model does not give the so-called weak segregation regime 
power law L - b-'I4. The derivation of this exponent usually relies on the observation 
that there is only one length scale in the problem. The present solvable model dem- 
onstrates that the argument is insufficient, since even in our model there is only one 
length scale in the weak segregation regime. For cy = t it is crucial that the square 
gradient term in the free energy density dominates the contribution of the term Q,. This 
is possible only when the contribution from Q, is negligible at least qualitatively. For this 
to be true Q, must have a differentiable maximum near the origin. In our case Q, is of 
order q near the origin, so that, for smaller amplitudes of q, Q, dominates the free 
energy density, and the weak segregation exponent for our model becomes larger than 
h. More details will be discussed in our full paper about the CDS modelling of block 
copolymers. 
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